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RECENT ADVANCES IN SOLID POLYMER ELECTROLYTE FUEL CELL
TECHNOLOGY WITH LOW PLATINUM LOADING ELECTRODES

Supramaniam Srinivasan, David J. Manko, Hermann Koch1,
Mohammad A. Enayetullah and A. John Appleby
Center for Electrochemical Systems and Hydrogen Research
Texas Engineering Experiment Station
Texas A&M University System
College Station, Texas 77843

Of all the fuel cell systems only alkaline and solid polymer electrotyte fuel cells are capable
of achieving high power densities (>1W/cm?2 ) required for terrestrial and extraterrestrial
applications. Electrode kinetic criteria for attaining such high power densities are discussed.
Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated
earlier by different groups using high platinum loading electrodes (4 mg/cm?2) . Recent works at
Los Alamos National Laboratory and at Texas A&M University (TAMU) demonstrated similar
performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45
mg/cm? ) in the electrodes. Some of the results obtained at TAMU are discussed in terms of the
effects of type and thickness of membrane and of the methods of platinum localization in the
electrodes on the performance of a single cell.

1 INTROD ON

1.1 Rationale for Selection of Solid Polymer Electrolyte Instead of Alkaline Electrolyte Fuel
Cell System for Attainment of High Power Densities

Only the alkaline and solid polymer electrolyte fuel cell systems are capable of attaining

high power densities (>1 W/cm2). The pros and cons of the two fuel cell systems are best
expressed as in Table 1. Even though the alkaline fuel cell systems developed by International
Fuel Cells/United Technologies Corporation(1), for the Apollo and Space Shuttle Program, are in a
highly advanced state and have functioned extremely well for the required missions, the solid
polymer electrolyte fuel cell system is a stiff competitor for the alkaline fuel cell system, as is
clearly evident in Table 1. There is already a sufficient Technology Base Development for the
alkaline system at International Fuel Cells/United Technologies Corporation and several $100 M
have been invested in this system. Even though a considerably lesser financial support has been
provided for the solid polymer electrolyte system, it is in an advanced state of development, as
evidenced by the progress made in the development of 1.5 kW systems by Ballard Technologies,
Inc. in Vancouver, Canada (2) and by Ergenics Power Systems, Inc., in Wyckoff, New Jersey(3).
Siemens(4) in Erlangen, Germany is also engaged in research, development and demonstration of
high power density solid polymer electrolyte fuel cell systems for submarine applications. The
work on solid polymer electrolyte fuel cell systems by these organizations has been with high
platinum loading (4 mg/cm?) electrodes. In the most recent work at Ballard, it has been reported
that a current density (i) of 6 A/cm? has been attained at cell potential (E) of 0.5 V. The slope of
the linear region in Ballard's E - i plot is 0.08 ohm cm?. The performance of relatively high power

densities (1A/cm?2 at 0.7V) in solid polymer electrolyte fuel cells with low platinum loading
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electrodes was first demonstrated at Los Alamos National Laboratory by Srinivasan, Ticianelli,
Derouin and Redondo (5-7). B

The solid polymer electrolyte fuel cell system has major advantages over the alkaline fuel
cell one in terms of lower operating temperature, ability to start from cold, and total lack of
electrolyte management problems. From a cold (10°C) start-up, this system can be designed to
give full power in under 30 seconds. The fuel cell system can easily be programmed for instant
start-up by arranging a stack hydrogen dead-volume after the cut-off valve equal to twice the
corresponding oxygen cut-off-dead-volume. Short-circuiting will rapidly reduce hydrogen and
oxygen partial pressures to close to zero, with production of water that is sealed into the stack, and
so will maintain the membrane in peak condition. Thus, a cold solid polymer electrolyte fuel cell
stack can be safely and indefinitely left on open circuit, if prevented from freezing, and it can still
be ready for rapid start-up. This is a great advantage compared with the high-performance alkaline
fuel cell system, which must be maintained at the required minimum temperature to prevent
electrolyte solidification, and whose open-circuit storage under these conditions is doubtful.

1.2 Necessarv Electrode Kinetic Criteria for Attainment of High Power Densities

The heart of the fuel cell system is the electrochemical cell. Even though the electrode
kinetics of the electrochemical cell have been adequately dealt with in books (8,9) and review
articles in journals (10), it is worth recapitulating the electrode kinetic criteria for attainment of high
power densities. As will be seen from the brief analysis presented below, the electrode kinetics of
fuel cell reactions pose the critical issues and problems.

Firstly, there is no doubt that the only fuel cells which are capable of attaining high power
densities are the ones using hydrogen and oxygen as reactants. Secondly, it has been clearly
demonstrated that only the fuel cells with alkaline and perfluorinated sulfonic acid polymer
electrolytes are capable of attaining high power densities. The main reason for this is that there is
hardly any anion adsorption on electrocatalysts from these electrolytes and thus the poisoning of
the oxygen reduction reaction is minimal. Thirdly, in fuel cells with both these electrolytes, mass
transport limitations are not visible at current densities up to several A/cm2. Under these
conditions, the cell potential (E) - current (i) relations may be expressed by the equation: -

E=E,-blogi-Ri (1)

In perfluorinated sulfonic acids and their polymeric acids (for e.g., Nafion), the kinetics of
hydrogen oxidation is extremely fast and the potential of the hydrogen electrode varies linearly with
current density up to high current densities (a few A/cm?2) (7). In alkaline electrolytes, this is not
the case because the exchange current density for this reaction is considerably less than in the
perfluorinated sulfonic acids(11). However, the oxygen reduction reaction is faster in alkaline
medium than in perfluorinated sulfonic acids. In both media, the relation between the oxygen
electrode potential and current density is semi-logarithmic, and this accounts for the second term in
the right hand side of Eq. 1. In this equation, b represents the Tafel slope for the oxygen reduction
reaction. The first term on the right hand side, may be further expressed by:

E,=E;-blogi, 2)

where E; is the reversible potential for the cell and i, is the exchange current density for the oxygen
reduction reaction. Differentiating equation (1), one obtains:

=t 3)
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At low current densities, the first term on the right hand side of Eq. 3 is predominant and is
reflected in the high slope (which gradually decreases) of the cell potential - current density plot
(see Fig. 1). At higher current densities, the second term becomes important and is responsible for
the linear region in this plot. Contributions to R are from (i) the ionic resistance of the electrolyte;
(i) electronic resistance of the electrodes; (iii) charge transfer resistance of the hydrogen electrode;
(iv) charge transfer resistance of the oxygen electrode which is due to the difference in the
activation overpotential between the two current densities over which the slope was measured; and

(v) any small contributions to mass transport resistances. As seen from figure 1, if mass transport.

becomes important there will be a rapid fall-off of cell potential with current density and thus only
close to the limiting current density does mass transport control exert its influence. This

apparently simplified equation applies over 3 decades of current density (1m A/cm? to 2 A/cm?)
for high power density solid polymer electrolyte fuel cells (see Section 3). :

It is worthwhile at this stage to focus on the electrode kinetic requirements to attain high
power densities by an examination of Equations (1 to 3) and Figure 1. Two factors clearly
dominate the shape of the cell potential - current density relation: these are the Tafel parameters for
the oxygen reduction reaction and the ohmic overpotential in the cell. The highest values of the
exchange current density for oxygen reduction in porous gas diffusion electrodes is approximately
106 A/cm?. The minimum value of R in Eq. 1 which has been reported is 0.05 ohm cm? for the
alkaline fuel cell system (operating at 150°C and 8 atm) and 0.08 ohm cm? for the solid polymer
electrolyte fuel cell system (operating at 95°C and 5 atm). In alkaline electrolytes, the Tafel slope
for oxygen reduction on the best electrocatalyst (90% Au 10% Pt) is 0.04 V/decade, whereas in
solid polymer electolytes it is 0.06 V/decade. The best reported cell performance in the alkaline
fuel cell system is at a temperature of 150°C and 8-10 atm pressure. In the solid polymer
electrolyte fuel cell system, most of the work has been carried out at close to 100°C, whereas the
best, reported, performance by Ballard Technologies, Inc. is at 120°C. Use of a value of E; =1.20
V is a close approximation for the reversible potential of the fuel cell in both these environments.
Thus at a current density of 3 A/cm2, and a cell potential of 0.8 V(an expected performance of fuel
cells for defense applications), one may write the following expressions for the exchange current
densities of the oxygen reduction reaction: '

Alkaline fuel cell:
0.8 =1.20+0.04logi,-0.041log3 - 0.05 x 3 4)
oodp=1.7x 10% A/ecm?
SPE® fuel cell:
08 =1.20+0.061logio-0.06log3 -0.10x 3 5)

o i,=6.5x 102 Afem?

This simplified analrysisisigniﬁes that the exchange current density for oxygen reduction in alkaline
electrolyte must be equal to or greater than about 2 x 10 A/cm? (based on the geometric area of

the electrode) to reach the specified goals. On the other hand, with the value of R (0.1 ohm cm?’)
assumed for the solid polymer electrolyte, the exchange current density for the oxygen reduction

reaction will have to be greater than 7 x 10 A/cm2 (again based on the geometric area of the
electrode). If, however, we were to assume the same value of R for the solid polymer electrolyte
fuel cell as that for the alkaline fuel cell, the exchange current density for the oxygen reduction will

have to be 2 x 10* A/cm?. Considering the exchange current densities, which have been reported
for oxygen reduction on smooth surfaces in alkaline (i, = 10" A/cm2) and fluorinated sulfonic acid

(i, = 107 A/cm?) electrolytes at room temperature and assuming (i) an increase of these values by a
factor of 10 for operation at elevated temperatures (150°C for the alkaline fuel cell system and
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120°C for the SPE®fuel cell system); and (ii) a conservative value of 100 for the roughness factor of
the porous electrodes, it should be possible to reach the desired goal of operation at 3 A/cm? and
0.8 V/cell, only if the slope of the linear region of the cell potential - current density is 0.05 ohm

cm? or less.

1.3 A Snap-Shot Version of the Status of Solid Polymer Electrolyte Fuel Cell Technology

In three recent articles (5-7) the present status of the solid polymer electrolyte fuel cell
technology is summarized. For detailed information, the reader is referred to these publications.
In this paper a "snap-shot" version (Table 2) of the progress made in this field is presented.
Table 2 demonstrates that significant progress has been made during the 1980's in solid polymer
electrolyte fuel cell technology in spite of the fact that the funding for this program is miniscule
compared to the investments made for the development of alkaline, phosphoric, molten carbonate
and solid oxide fuel cells. In hardware production of solid polymer electrolyte fuel cells, Ballard
Technologies Corporation and Ergenics Power Systems, Inc. have done extremely well. Both are
at a stage where they can custom-make 1 1/2 kW power plants. However, these systems, as well
as the previously developed ones by General Electric Company, contain electrodes with high
platinum loadings (4 mg/cm?). The first demonstration of high power density solid polymer
electrolyte fuel cells with low platinum loading electrodes was by one of the authors in this paper
(SS) and his coworkers at Los Alamos National Laboratory (LANL); a brief description of this
work is presented in the next sub section.

1.4 A Svnopsis of Advances in the Attainment of High Power Densities in Solid Polymer
Electrolyte Fuel Cells with Low Platinum Loading Electrodes

Since the first Space Electrochemical Research and Technology (SERT) Conference, in
which the results of the first set of investigations on solid polymer electrolyte fuel cells with low
platinum loading electrodes were presented(5), there has been considerable progress in developing
methods for the attainment of high power densities (about 0.7 W/cm?) in such types of fuel cells.
It must be noted that the Nafion (registered trademark of Dupont) membrane was used as the
proton-conducting membrane in all these investigations. The methods used to attain the high
power densities may be summarized as follows:

(i) optimization of the amount of Nafion impregnated into the electrode structure;

(ii) hot-pressing of the Nafion-impregnated electrodes to prepurified Nafion membranes at
120°C (close to glass transition temperature) and 50 atm pressure;

(iif) optimization of the humidification of the reactant gases at a temperature of 5°C for
oxygen or air and 10-15°C for hydrogen above the cell temperature;

(iv) operation of the cell at elevated temperatures and pressures (say, 80° C and 5 atm); and

(v) localization of platinum by fabrication of electrodes with a higher percentage of
platinum crystallites on high surface area carbon (i.e., supported electrocatalysts with
20 wt% Pt/C rather than 10%) while still maintaining the amount of Pt in the electrode
(0.4 mg/cm?2) and by sputter-deposition of a thin film of platinum on the front surface

(0.05 mg/cm?), corresponding to 500 A film a smooth surface).”

By use of all these methods, it was possible to attain a current density of 1 A/cm? at a cell
potential of 0.64 V with Hp/O, as reactants and 0.580 V with Hp/air reactants at 80°C and 3/5 atm
pressure (3 on hydrogen and 5 on oxygen side).

The cell potential (E) - current density (i) plot fitted the equation (1). The electrode kinetic
parameters for the cell E, band R were calculated using a non-linear least squares fit of this
equation to the experimental points. The slope of the Tafel line for oxygen reduction was found to
be 0.050 to 0.060 V/decade and was independent of temperature.
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TABLE 3

Effect of Method of Deposition of Thin Layer of Platinum (0.05 mg/cm 2 )
on Front Surface of Prototech Electrodes (20% Pt/C, 0.04 mg Pt/cm 2)
on Electrode Kinetic Parameters (see Eq. 1) for H 2 /O, Solid Polymer
Electrolyte Fuel Cell with 100 pm thick Nafion Membrane.

Electrode Kinetic Current

Parameters for Cell Density

Membrane Type Cell Pressure Eo b R 2 at 0.9V
and Thickness Temperature Hy /05 v \'4 Q/em mA/c
Sputtered Pt 50 171 0.930 0.044 0.339 7
" 50 4/5 0.993 0.047 0.301 35
" 70 4/5 0.983 0.040 0.252 46
) 85 4/5 0.999 0.450 0.201 52
) 95 475 0.997  0.500  0.189 61

Unsupported
PYNafion, Brushed 50 1/1 0.964 0.052  0.501 12
. 50 4/5 0.956 0.048 0.452 48
70 i/1 1.024 0.059 0.505 10
) 70 4/5 1.014 0.052 0.462 51
) 85 4/5 1.008 0.045  0.414 61
) 95 4/5 1.005 0.044 0.368 35
HQPtCIGin

HQO-CHsOH—erShed 50 1/1 0.978 0.056 0.338 19
) 50 475 1.024 0.053  0.341 72
) 85 4/5 1.019 0.044  0.253 80
" 95 475 1.020 0.056 0.189 83
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plot and the departure from linearity occures at a relatively low current-density. The slopes of the
linear regions of the E-i plots in the other two cases are similar for identical operating conditions
but not low enough to reach the desired goals of power density (See Section 1.2). However, it is
encouraging to note that the wet chemical method of application of chloroplatinic acid followed by
the heat-treatment provides electrodes which exhibit similar performances to the sputter-deposited
ones. - : :

3.2 Effects of Thickness of Membrane on Performances of Fuel Cells

Most of the LANL studies reported in references 5 to 7 used Nafion 117 membranes. Fuel
cells with these membranes yield a slope of approximately 0.25 ohm cm? in the linear region of
the E-i plot. If the resistance of the test cell fixtures (0.05 ohm cm?2) is subtracted from this value,
the slope of the E-i (Table 3) plot (linear region) will be reduced to 0.20 ohm ¢cm?2- This value is
still too high to reach current density of 2 to 5 A/cm? at reasonable cell potentials (> 0.5V). Thus,
in this work experiments were carried out with Nafion membranes having a thickness of 50
and100 pm and the results of fuel cell performance compared with those in fuel cells with the
Nafion 117 membrane (thickness: 175 um). The 100 um membranes were of the "sweded type"
(sweding was carried out to roughen the surfaces of the membrane and make it of uniform
thickness). The performances of the fuel cells with the 50, 100 and 175 um membranes are shown
in Fig. 6. While the fuel cell with the Nafion 117 membrane begins to show mass transport

limitations at a current density of 1 Afcm?2, this is not the case for the single cells with thinner

Nafion membranes. The single cell with 100 pm membrane shows mass transport limitation at 1.8

A/cm? while the cell with 50 Hm membrane shows no mass transport limitation up to the highest
current density (2 A/cm2) of measurements.The electrode kinetic parameters extracted from these
experimental results and using equation (1), are shown in Table 4. The agreement in the "pseudo i
R" (all forms of overpotential which show a linear variation of potential with current density -
mostly ohmic ) corrected Tafel plots Fig. 7 for oxygen reduction in the cells with the 100 and 175
pm thick membranes are as expected. The sweded membrane (100 pum thick) shows a slightly
higher resistance than expected on the basis of its thickness as compared to the thicker (175 um)
membrane (Table 4).

3.3  Dow Membranes; 'I‘He Solution  to Attainment of Super High Power Densities

In the work to date the highest power densities were attained by using Dow membranes as
the electrolyte layer. A comparison of the performances of single cells using the Nafion and Dow
membranes is illustrated in Fig. 8. The Nafion Membranes had thicknesses of 175 and 100 um
while the Dow membranes were 125 pm thick. It is natural to expect a thinner membrane to have a
lower resistance but even if we take this into consideration the Dow membrane has a lower specific
resistivity (i.e., higher specific conductivity) than Nafion. The reason for the higher specific
conductivity of the Dow membrane than that of Nafion is that the monomer of the former may be
represented by:

CF=CF O CF,CF, SO3 H (6)
while that of the later is: CFy=CF O CF, (le O CF, CF, SO3 H (7)
CF3

Hence, there are a greater number of sufonic acid groups in Dow polymer membrane than in the
Nafion polymer membrane. Expressed in another manner, the Dow proton conducting polymer has
a lower equivalent weight than Nafion.
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TABLE 4

Effect of Thickness of Nafion Membrane and of Type of Membrane on
Electrode Kinetic Parameters of H ; /O, Solid Polymer Electrolyte
Fue! Cell with Prototech Electrodes (20% Pt/C, 0.40 mg Pt/cm 2)
on to which a Thin Layer of Pt (0.05 mg/cm2 ) was sputtered.

Electrode Kinetic Current
Parameters for Cell Density
Membrane Type Cell Pressure Eo b R 2 at 0.9V
and Thickness Temperature Hy /09 v \ Q/cm mA/c
Nafion 117,
175pm 50 1/1 .946 049 475 7
" 50 3/4 1.003 0.048 428 50
" 80 3/4 .951 0.037 437 61
" 85 3/4 1.007 0.046 .298 70
Sweded Nafion 50 1/1 0.964 0.052 0.339 12
117, 100um
. 50 4/5 0.956 0.048 0.301 48
. 70 4/5 1.024 0.059 p.252 10
. 85 4/5 1.008 9.045 0.201 61
- 95 4/5 1.005 0.044 0.189 35
50 1/1 .833 .061 .188 <1
Nafion 117,
50um
50 1/1 .955 061 .195 7
Dow M
ow Membranes 50 4/5 995  .053  .157 42
" 70 1/1 .912 .062 .153 1.6
70 4/5 .994 .053 .116 43
" 85 4/5 1.002 .053 A1 62
) 95 4/5 1.000 549 110 54
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Figure 8 shows that the cell-potential current density plots overlap in the low current
density region (say up to 50 mV). This means that the activation-controlled behavior is unaffected
by the characteristics of the membrane (Dow vs Nafion, Nafion thick vs thin). One can easily
interpret this result on the basis that the electrochemical reaction occurs to a large extent within the
pores and the surface of the electrodes which are coated with the proton-conducting membranes.
With increasing current density, the role of the membrane (type, thickness) is dominant and
consequently the slopes of the linear region are different. One significant result is that the slope of
the linear region in the cell with the Dow membrane (thickness 175 um) is less than that in the cell
with the Nafion membrane (thickness 100 um) even thaough the thickness of the Dow membrane
is greater than that of the Nafion membrane. This result can be explained by the fact that the Dow
membrane has a higher specific conductivity than that of the Nafion membrane.

There is a second interesting observation in the E-i plots. The departure of the E-i plot
from linearity at the higher current density appears to depend on the thickness of the membrane (cf
the results with Nafion membrane 175 and 100 pm thick membrane) and the type (cf Dow
membrane 125 um vs Nafion 100 um). Departure from linearity at the high current densities are
associated with mass transport controlled processes. Generally, these are due to mass transport
limitations of reactants reaching the active sites in the electrode or of products (or inert gases like
N> when air instead of oxygen is used) away from the electrocatalytic sites. However, the
electrode structures and conditions of humidification of reactant gases were identical in the three
cases. It is very likely that transport processes within the membrane can be rate-limiting. The
of the electric field, and water molecules which are carried with the protons. Itis estimated that 3-6
water molecules are transported with the protons. Due to the resulting concentration gradient of
water molecules in the cell during operation one can expect water molecules to diffuse from the
cathode to the anode. Mass transport limitations could occur due to any one or more of these
processes. The Dow membrane shows a linear behavior up to a current density of 2 A/cm2. This
is not the case in the cell with the Nafion membrane which is slightly thicker than the Dow
membrane. This result lends insight on different types of proton conduction (say Grotthus type in
a Dow membrane vs classical proton transport through the electrolyte in Nafion). It is interesting
to point out that in previous studies it was noted that when mass transport limitation begins on one
electrode, it also sets in on the other at the same current density. A detailed modeling analysis of
the mass transport processes is necessary to interpret the result in the higher current density range.

The electrode kinetic parameters for the cells were calculated as described briefly in section
1.2. The parameters Eg and b are unaffected by the membrane. However, R, which represents the
rate of increase of cell potential in a linear manner with the current den51ty, depends on the
membrane type and its thickness. The most significant contribution to R is the ionic resistance of
the membrane, as has been shown previously using high frequency measurements (7). The
striking result is that R is a factor of two less for the cell with the Dow membrane (thickness 125
pm) than for the one with the Nafion membrane. This result follows from the fact that the Dow
membrane has a lower specific resistance. The calculated value of R is always slightly less than
the slope of the linear region in the E vs i plot. For example for the cell with the Dow membrane
operating at 95°C, the R is 0.110 while the slope of the linear region is 0.113. The reason for this
is that the apparently linear slope of the E-i plot includes a small contribution of the charge transfer
resistance of the oxygen reduction reaction. In the cells used in this work the test cell fixtures have
a resistance of 0.05 ohm cm?2. If this is excluded from the values of R and of the slope of the E-i,
line the resulting values are only 0.06 and 0.08 ohm cm? respectively. The latter value is the same
as that of the slope of the E-i plot in the best Ballard Cells. Using the calculated values of R, the (E
+ Ri) vs log i plots (Fig.9) were made for the cells with the Dow (125 im) and Nafion ( IOO pm)

membranes operating at 95°C and 4/5 atm. The Tafel behavior is observed for the former cell over
the entire current density range, whereas for the latter, there is departure from the Tafel line at the
same current density as the one in the E-i plot where it departs from linearity.
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Another resutl is worth mentioning. The half and single cell potentials are plotted as a
function of current density (Fig. 10) for the cell with the Dow membrane. The hydrogen electrode
exhibits a linear behavior throughout the entire current density range. The hydrogen overpotential

at 2A/cm? is only 20 mV. Thus the charge transfer resistance due to the hydrogen electrode is only

0.01 ohm cm?2 which is a contribution of this electrode to the calculated R value or the measured
slope of the cell potential vs current density plot.

4 CONCLUSIONS
The conclusions which may be drawn from these studies are:

(i) The chloroplatinic acid method of treatment of the electrodes provides a satisfactory
alternative and considerably more economic method than sputtering for the deposition
of a thin layer of Pt on the front surface of the electrodes, which is essential for the
attainment of high power densities.

(ii) Use of thinner membranes is advantageous from the points of view of lowering the
jonic resistance and lowering mass transport limitations at higher current densities.

(iii) Striking results have been obtained in cells with the Dow membrane which has a

higher ionic conductivity , lesser mass transport limitations (H* and H70) and better
water management characteristics than Nafion.

(iv) The performances of a solid polymer electrolyte fuel cells with low platinum loading
electrodes are approaching those of the ones with ten times the platinum loading in
respect to attainment of high power densities.
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Figure 1.  Typical plot of cell potential versus current for fuel cells illustrating regions of
control by various types of overpotentials.
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Figure 2.  Schematic of solid polymer electrolyte fuel cell assembly.
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Figure 3.  Schematic of solid polymer electrolyte single cell test station.
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Figure 5.
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each electrode: 0.45 mg/cm<.
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Figure 8.

thicknesses, operating at 95°C with H/05 at 4/5 atm. Nafion117, thickness:

175 um (o) and 100 pm (%). Pt loading on each electrode: 0.45 mg/cm?.
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Figure 9. Plots of (E + iR) vs log i for single cells with different membrane materials,
operating at 95°C with Ho/Oo at 4/5 atm. Dow membrane, 125 um (o),

Nafion 117, 175 pum (%). Pt loading on each electrode: 0.45 mg/cm2.
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Figure 10. Cell and half cell potentials vs current density plots for a single cell with Dow
membrane (thickness: 125 pm) and Pt-sputtered Prototech electrodes (Pt
loading: 0.45 mg/cm2) operating at 95 °C with Ho/Oo at 4/5 atm.
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